شناسایی خودکار چهره با استفاده از ماشین های بردار پشتیبان

thesis
abstract

هدف از شناسایی خودکار چهره، شناسایی هویت یک فرد به صورت خودکار توسط یک ماشین بر مبنای ویژگی های استخراج شده از تصاویر چهره آن فرد می باشد. در این رساله، دو الگوریتم جدید برای شناسایی خودکار چهره با استفاده از ماشین های بردار پشتیبان پیشنهاد می گردد. الگوریتم پیشنهادی اول بر مبنای ترکیبی از ویولت های گابور، آنالیز تفکیک کننده خطی مستقیم (dlda) و ماشین بردار پشتیبان (svm) بنا نهاده می شود. در این روش، ابتدا بردارهای ویژگی با استفاده از ویولت های گابور از تصاویر چهره خام استخراج می شوند. این ویژگی های مبتنی بر گابور تا حدودی در مقابل اعوجاج های محلی ناشی از تغییرات در شرایط روشنایی تصاویر، وضعیت قرارگیری و حالات چهره ها مقاوم هستند. سپس، بردارهای ویژگی استخراج شده از تصاویر چهره، با استفاده از الگوریتم dlda به یک زیرفضای با بعد پایین تصویرنگاری می گردند. در نتیجه این نگاشت، ضمن کاهش بعد بردارهای ویژگی، قابلیت تفکیک پذیری آن ها افزایش پیدا می کند که این خاصیت منجر به بیشتر شدن دقت دسته بندی داده ها می گردد. در مرحله بعدی، بردارهای ویژگی dlda مبتنی بر گابور جهت دسته بندی به ماشین بردار پشتیبان اعمال می شوند. هم چنین، در الگوریتم پیشنهادی اول این رساله، یک تابع هسته جدید برای svm به نام تابع هسته چندجمله ای نرمالیزه شده به صورت ابرنیم کروی (hnp) طراحی می گردد. سپس، موثر بودن تابع هسته پیشنهادی hnp در بهبود عمل کرد سیستم شناسایی چهره مبتنی بر svm هم به صورت نظری اثبات می شود و هم در عمل مشاهده می گردد. در نهایت، برای ارزیابی الگوریتم پیشنهادی اول رساله، آزمایش های متنوعی بر روی پایگاه داده های استاندارد feret انجام می گیرد. نتایج حاصل از این آزمایش ها نشان می دهند که سیستم شناسایی چهره پیشنهادی در مقایسه با سایر روش های مشابه عمل کرد بهتری دارد. در الگوریتم پیشنهادی دوم، از ویولت های گابور، آنالیز تفکیک کننده مستقیم هسته (kdda) و ماشین بردار پشتیبان ویولت (wsvm) برای شناسایی چهره استفاده می شود. در این روش، ابتدا با استفاده از ویولت های گابور، ویژگی های مقاوم از تصاویر چهره استخراج می شوند. سپس، الگوریتم غیرخطی kdda برای یادگیری زیرفضا مورد استفاده قرار می گیرد. به عبارت دیگر، بردارهای ویژگی مبتنی بر گابور، که در فضایی با بعد بسیار بالا قرار دارند، توسط الگوریتم kdda به زیرفضایی با بعد پایین تصویرنگاری می گردند. این روش یادگیری زیرفضای مبتنی بر هسته، یک زیرفضای بهینه را از لحاظ میزان بالای قابلیت تفکیک پذیری داده ها تولید می کند. در مرحله آخر، بردارهای ویژگی kdda مبتنی بر گابور توسط ماشین بردار پشتیبان ویولت (wsvm) دسته بندی می شوند. در سیستم شناسایی چهره پیشنهادی دوم این رساله، یک تابع هسته معتبر به نام تابع هسته ویولت در داخل ماشین بردار پشتیبان مورد استفاده قرار می گیرد. با استفاده از تابع هسته ویولت، توانایی تعمیم svm افزایش می یابد و در نتیجه، عمل کرد سیستم شناسایی چهره حاصله بهتر می شود. در نهایت، روش پیشنهادی دوم رساله نیز با انجام آزمایش های مختلفی بر روی پایگاه داده های feret مورد ارزیابی قرار می گیرد. نتایج به دست آمده از این آزمایش ها نشان می دهند که دقت و کارآیی الگوریتم پیشنهادی برای شناسایی چهره، در قیاس با سایر الگوریتم های شناسایی چهره مرتبط بیشتر است.

similar resources

بهبود دقت شناسایی غواص با استفاده از الگوریتم کلاس‌بندی ماشین بردار پشتیبان

ویژگی‌های منحصر به فرد و امکان انتشار آسان سیگنال های صوتی در محیط زیرآب، امکان شناسایی و رد گیری اهداف زیر آبی بوسیله آنها را فراهم می‌کند. از جمله کاربردهای پدافندی سیگنال صوتی در حوزه‌ی دریا می‌توان استفاده از سونار برای شناسایی غواص به منظور جلوگیری از نفوذ غواصان در نیروگاه های ساحلی و همچنین حفاظت از تجهیزات بندرگاهی و ... را نام برد. برای این مقصود شناسایی صحیح غواص از سایر اهداف زیر آبی...

full text

بازشناسی چهره با استفاده از آنالیز تفکیک خطی بر پایه موجک‌های هار و گابور و ماشین بردار پشتیبان

در این مقاله، پس از انجام مطالعه‌ای در مباحث الکترونیک، پردازش تصویر، بینایی ماشین، بازشناسی چهره، فیلترینگ، تبدیل موجک، آنالیز تفکیک خطی و ماشین بردار پشتیبان، روش جدیدی برای بازشناسی چهره، معرفی و پیشنهاد شده است. روند کلی این روش به‌صورت زیر است: ابتدا تعدادی تصویر از چهره اشخاص، که در این مقاله از پایگاه داده‌های FERET برگرفته شده است؛ به‌عنوان بانک اطلاعاتی برای بازشناسی چهره، وارد سیستم م...

full text

پیش بینی ژن‏ های بیماری با استفاده از دسته‏ بند تک‌کلاسی ماشین بردار پشتیبان

Abstract: In disease gene identification and classification, users are only interested in classifying one specific class, disease genes, without considering other classes (non-disease genes). This situation is referred to as one-class classification. Existing machine learning-based methods typically use known disease gene as positive training set and unknown genes as negative training set to bu...

full text

مدل‌سازی وضعیت صخره های مرجانی با استفاده از رگرسیون ماشین بردار پشتیبان و اعمال شاخص‌های طیفی

از منظر تنوع زیستی، جزایر مرجانی مانند جنگل‌های استوایی، متنوع ترین اکوسیستم‌های جهان و شاخصی از سلامت اکوسیستم محسوب می‌شوند اما اکثر این جزایر به دلیل تحولات توریستی و نیز تأثیرات تغییر آب‌وهوا رو به نابودی‌اند.توانایی شناسایی و ارزیابی سلامت مرجان‌ها با استفاده از تصاویر ماهواره‌ای شیوه‌ای مقرون‌به‌صرفه و موثر است. با توجه به اثرگذاری دمای سطح آب بر روی سلامت و توزیع رجان‌ها، با استفاده از ا...

full text

کاربرد ماشین بردار پشتیبان در تفکیک زون های دگرسانی هیدروترمال با استفاده از سنجنده آستر

در این پژوهش با استفاده از سنجنده آستر تلاش شده است کاربرد الگوریتم ماشین بردار پشتیبان در تفکیک دگرسانی های هیدروترمال ذخایر مس پورفیری مورد مطالعه قرار گیرد. برای آموزش این الگوریتم در مجموع 2204 پیکسل از مناطق کانی سازی شده انتخاب گردید. باندهای 4، 6، 7 و 8 سنجنده آستر برای شناسایی دگرسانی های فیلیک و آرژیلیک و 9 باند محدوده ی مرئی و مادون قرمز نزدیک برای شناسایی دگرسانی پروپیلیتیک به عنوان ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده مهندسی برق و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023